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Oriented self-avoiding walks (OSAWs) on a square lattice are studied, with 
binding energies between steps that are oriented parallel across a face of the 
lattice. By means of exact enumeration and Monte Carlo simulation, we 
reconstruct tile shape of the partition function and show that this system 
features a first-order phase transition from a free phase to a tight-spiral phase 
at fl,.= log(it), where i t =2.638 is the growth constant for SAWs. With Monte 
Carlo simulations we show that parallel contacts happen predominantly 
between a step close to the end of the OSAW and another step nearby; this 
appears to cause the expected number of parallel contacts to saturate at large 
lengths of the OSAW. 

KEY WORDS: Self-avoiding walks; oriented walks; collapse; spiral walks; 
Monte Carlo; exact enumeration. 

1. I N T R O D U C T I O N  

M a n y  aspects of the behavior  of polymers can be described by self-avoiding 

walks on a lattice. Some polymers have interact ions that  depend on the 
spatial or ien ta t ion  of the polymer,  for instance A-B polyester. Such 
polymers are convenient ly  modeled by oriented self-avoiding walks 
(OSAW) with two types of short - ranged interact ion between edges, 
depending on their relative orientat ion.  ~1-4~ 

The model  of invest igat ion in this paper  consists of one O S A W  on a 
square lattice'. Besides self-avoidance, the only interact ions of the O S A W  
with itself occur if two steps of the walk are one lattice spacing apart. If the 
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two steps have the same orientation, they are said to form a parallel con- 
tact, to which an energy gain of ep is attributed. If they have opposite 
orientation, they are said to form an antiparallel contact, with an energy 
gain of e.. If [3 is the inverse temperature and we define [3p = - t i e  r and 
[3 , ,=- f i e .  then the partition function of such an oriented self-avoiding 
walk is given by 

Z,,([3p. [3.) = ~ C,,(rn r, In,,) e pr''e+a""'~ (1)  
rap, ma 

where the sum is over all allowed values of the number of parallel contacts 
m r and the number of antiparallel contacts m.  and C,,(m r, m,,) is the 
number of configurations of length n with m r parallel and in,, antiparallel 
contacts. The limiting reduced free energy per step is given by 

F([3r, [3.) = lim 1 log[Z,,([3p ' [3.)] (2) 

The phase diagram of this model was studied previouslyl2); numerical 
results from exact series up to 17 = 29 edges showed the existence of three 
phases: a free SAW phase, a normal collapsed phase; and a compact spiral 
phase. The transition from the free to the spiral phase was conjectured to 
be of first order. 

In this article we will concentrate on the case where there are only 
interactions between parallel contacts, i.e., fl , ,=0. The earlier work 12~ 
rigorously proved that for this case the reduced limiting free energy is con- 
stant for tip ~ 0 with value log(zl), where / t  is the growth constant for the 
SAW (IL = 2.638). For  fie > 0 the following rigorous bounds were proved: 

fir <~ F(fle, O) <~flp + log(/t) (3) 

The above results prove the existence of a phase transition for 
0 ~<flp <~log(/t). Bennett-Wood et al f f  -~ conjectured that the critical inverse 
temperature fl,. is near or equal to the lower bound which, for [30 = 0, is 
log(/ t )~ 1. In section 2 we further investigate this phase transition by 
extending the exact enumeration data, by means of Monte Carlo results 
and combining them with some rigorous results on tight spirals. 

Another interesting question concerning OSAWs is the mean number 
of contacts. Flesia t3~ proved that for the mean number of antiparallel con- 
tacts one has (m , >  ~ 17 in two or higher dimensions, where n is the number 
of steps of the walk. The mean number of parallel contacts scales as 
< m p > ~ n  in three or higher dimensions, but in two dimensions the 
behavior is still an open question. Field-theoretic work ~l~ predicts that in 



2D Oriented SAWs with Parallel Contacts 365 

two dimensions  ( m p )  ~ log(n) in the limit n- - ,  oo. However,  Monte  Carlo 
results for OSAWs with up to 3000 steps seem to indicate that  ( r a p )  tends 
to a cons tan t  ~0.05.  (3) In  section 3 we present the results of large-scale 

Mon te  Carlo s imulat ions  with OSAWs of up to 5000 steps, and  investigate 
these results in a way that  allows extrapolat ions  to even larger n. Based on 
these results we obta in  an  upper  b o u n d  for ( m p )  in the limit n-- ,  oo. 

2. P H A S E  T R A N S I T I O N  T O W A R D  A T I G H T  S P I R A L  

Benne t t -Wood  e t  al. (2~ enumera ted  all configurat ions up to SAWs with 
a length of n = 29 and  ordered them according to their n u m b e r  of parallel  

and  antiparal lel  contacts. We extended the exact enumera t ion  of the 
OSAWs with parallel contacts,  and obta ined  all values for C, , (mp) ,  the 

n u m b e r  of OSAWs consist ing of 17 steps and having me parallel  contacts,  
up to n = 34. 

In  our  enumera t ion  program,  we start with generat ing all OSAWs of 
length l ~< n with a parallel  contact  between the first and  the last step. For  
each walk w, we determine the n u m b e r  of parallel contacts m,,.. We also 

Table I. Exact Enumeration of the Number of OSAWs of n Steps with mp 
Parallel Contacts 

n m e = 0 1 2 3 4 

30 4173469695963 61649050972 8921988104 1417268612 221155744 
31 10975225680123 163203273852 25422408744 3820038428 663920466 
32 29224474453695 453395153136 67676366244 11044497696 1800473376 
33 77923458322683 1201209580824 190907785004 29775283928 5291859172 
34 207390873801535 3318007864896 508582438722 84979159776 14355126160 

5 6 7 8 9 

30 35795108 5383888 801432 108062 16652 
31 98665196 17463042 2253640 399888 46368 
32 301423940 48238616 7546064 1123840 177756 
33 830969056 150009218  21332880  3819684 510908 
34 2474324280 415293124  67773784  10824900 1773072 

10 �9 11 12 13 14 15 

30 1372 272 16 
31 7188 640 164 
32 20000 3512 332 48 
33 81240 10096 1976 72 28 
34 235146 40728 5294 704 40 16 
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Fig. 1. A graphical representation of the partition function: the logarithm of the number of 
OSAWs is plotted as a function of its number of parallel contacts. Solid lines are data for 
n = 11 -.. 34, obtained from exact enumeration, circles are data for n = 50, 60, 70, 80, 90, and 
100, obtained from Monte Carlo simulations, squares are from properties of tight spirals, and 
the dotted lines connect the Monte Carlo results with the corresponding results for tight 
spirals. 

determine Mi(w, t~, m i), the n u m b e r  of extensions on the inside end of walk 
w with length t; ~< 17 - l and nh parallel contacts  with either itself or w, and 
Mo(w, to, too), the cor responding  quant i ty  for the extensions on the outside 
end. Since the walk w prevents contacts  between the inside and  outside 
extensions, the total  n u m b e r  of OSAWs of length n with mp parallel 
contacts is given by 

z,,(m~) =--1 ~ 
17"lp , i + t i + t , , = .  

M~( w, ti, mi) Mo( w, to, m,,) 6(mr, m,. + mi + mo) 

(4) 
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The prefactor in this equation corrects for the fact that there are m e 
different walks w from which we can generate the same OSAW with 
mp parallel contacts. Exploiting rotational and mirror symmetry, we 
enumerated all OSAWs of length n ~< 34 with one or more parallel contacts 
in a run of about  2 weeks on a four-processor DEC alpha workstation. 
Finally, the number  of OSAWs without parallel contacts is obtained by 
subtraction from the total number  of OSAWs (from ref. 7). 

The results are given in Table I, and plotted as the solid lines in Fig. 1, 
where log[ C,,(mp)] is plotted as a function of  rap. The figure shows that up 
to n = 34, the number  of configurations as a function of the number  of 
parallel contacts first drops quickly with a factor p,,, but then, over the 
whole range 1 ~< mp ~< m .. . .  falls off exponentially with the same exponent 
q,. The partition function Z,,(flp) is thus described well by 

C,,(1) =p,,C,,(O) 

C,,(m) ~ C,,(1) exp[ - q , , ( m -  1)] 
(5) 

where p,, and q,, are n-dependent parameters. 
To extend the graph presenting the partition function beyond n - - 3 4  

by means of exact enumeration is very hard. However, the left part  of this 
graph for much larger n can be obtained statistically by means of Monte 
Carlo simulations: OSAWs are randomly generated with the pivot algo- 
rithm ~51 and a histogram is made of the number  of parallel contacts of 
these OSAWs. This gives us a direct measurement of C,,(m,)/Z,,(O) for a 
small number  of parallel contacts. In our Monte Carlo simulations, we 
thermalized over 107 pivot moves, followed by 10 s moves to gather 
statistics; statistical errors were obtained by repeating the whole procedure 
ten times. The results are shown in Table II; the density of OSAWs with 
more than ~ 10 parallel contacts is so small that they will most likely never 
be generated, and we only obtain an upper bound for them. A good 
approximation for Z,,(0) is known: 

Z,,(O) ~ (A/4) ld'n ~'s- l (6) 

where It = 2.638, y.,. = 43/32, t61 and A = 1.771J 7~ The factor of one fourth is 
due to the fact that we count OSAWs that are equivalent after rotation 
only once. The Monte Carlo results from Table II for n = 50, 60, 70, 80, 90, 
and 100, multiplied by Z,,(0), are plotted as circles in the left side of Fig. 1. 

Also the rightmost point of the graph can be obtained, as there the 
only relevant configurations are tight spirals. The corners of a tight spiral 
are reached after n --- k, k + 1, 2k + 2, 2k + 4, 3k + 6, 3k + 9 .... steps, i.e., at 
n = i k + i  2 or n = i k + i ( i - 1 ) ,  where k is the number of steps in the same 
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Monte Carlo Results for the Density of OSAWs of Length n wi th  mp 
Parallel Contacts 

n m~, = 0 1 2 3 4 

50 0.97763(I) 0.01841(I 
60 0,97603{2) 0.01954(2 
70 0.97479(3) 0.02039(3 
80 0.97368(2) 0.02118(2 
90 0.97280(3) 0.02178(2 

100 0.97210(2) 0.02229(2 
1000 0.9629(4) 0.0284(3 
2000 0.9618(4) 0.0293{5 

0.003209(8) 0.000599(3) 0.000120(1) 
0.003555(7) 0.000696(3) 0.0001426(8) 
0.003832(7) 0.000780(4) 0.000164{1) 
0.004067(10) 0.000840(6) 0.000180(2) 
0.00426(1) 0 .000903(3)  0,000198(2) 
0.00441(I) 0 .000933(4)  0.000209(2} 
0.0066(1) 0 . 0 0 1 5 9 ( 7 )  0.00042(2) 
0.0067(1) 0 . 0 0 1 6 6 ( 5 )  0.00043(4) 

5 6 7 8 9 

50 0,0000233(4) 0,000005213) 0.00000112{9) 0.00000012{3) 0.00000002{2) 
60 0.0000300{5) 0.0000062(2) 0.0000013(1) 0.00000026(5) 0.00000008(2) 
70 0.0000346(6) 0.0000080(3) 0.0000015{2) 0.00000021(4) 0.00000009{4) 
80 0,0000401(8) 0.0000087(5) 0.0000019(2) 0.00000032(7) 0.00000014(3) 
90 0.000044(1) 0.0000109(3) 0.0000020(2) 0.00000045(6) 0.00000011(4) 

I00 0.000047(1) 0.0000112(5) 0.0000029(2) 0.0000007(I) 0.00000012(4) 
1000 0.000102{8) 0.000032(6) 0.00000912) 0.0000007(4) 
2000 0.00012{2) 0.000024(5) 0.000009(3) 0.0000010(4) 

direction at the inner end of the tight spiral, and i is a positive integer. 
Each additional step of the tight spiral adds one parallel contact, except 
steps before and after a corner. Thus, the number of parallel contacts mm,x 
for an OSAW of length n is given by 

if 17 ~< 2k: Dlma x = 0 

[ /  k2"~ 1/2 k]  [ (  k 2 ) l / 2 _ k ]  
if ,,>21,: , , ,  . . . .  = 1 , - 2 k + 3 -  ( " + 7 )  

where square brackets denote the Entier function ( [x ]  is the largest integer 
not larger than x). The number of parallel contacts of a '*rectangular" tight 
spiral (with k > 1) never exceeds that of the '*square" tight spiral (with 
k = 1 ), but they can be equal, adding to the degeneracy of the ground state. 
Additional ground states can be generated by removing steps from the 
inside and adding them to the outside end, until the corner is reached. 
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Also, if the tight spiral ends at a corner or one or two steps further, addi- 
tional ground states arise by rearranging these last steps. 

We enumerated all OSAWs with mma x parallel contacts and length up 
to n = 50, and confirmed that all ground states can be generated with these 
operations. Assuming that no new types of degenerate ground states arise 
after 17 = 50, we calculated the degeneracy of the ground state for lengths up 
to one million steps, and observed that the degeneracy fluctuates between 
4 (for a complete "square" tight spiral) and c,,,n 3/4 with % = 5.3, whereas 
the expected degeneracy grows as c,,n 3/4 with co = 2.1. For  n = 50, 60, 70, 
80, 90 and 100, there are 140, 40, 16, 4, 16, and 8 configurations with the 
maximum number of parallel contacts. We have added these results of the 
tight spirals in Fig. 1 as squares. 

For n,>34, the Monte Carlo data in Fig. 1 for small mp do not 
extrapolate to the exact results for tight spirals, but point below, which 
suggest that Eq. (5) is an upper bound for n ~> 34. The dotted lines in Fig. 1 
represent these upper bounds. We cannot exclude the possibility that for 
n ~> 34 the partition function initially stays below these dotted lines, then 
increases and crosses this dotted line for intermediate values of me, and 
finally reaches the exact result for tight spirals; however, we think that that 
scenario is unlikely, and the results concerning long OSAWs in the 
remainder of this section are based on the assumption that the dotted lines 
in Fig. 1 represent upper bounds. 

For  n ~< 34 we know C,,(0) and C,,(1) by exact enumeration, and for 
17 = 50, 60, 70, 80, 90, I00, 1000, and 2000 we know C,,(O)/Z,, and C,,( 1 )/Z,, 
accurately from the Monte Carlo simulations. This enables us to compute 
p,, in Eq. (5) for all these values of 17. For  large 17, p,, converges to a con- 
stant value around 0.031. To extract the specific heat and density of parallel 
contacts, we used a fit to p ,  which is given by 

p , , -  p ~  - (1/x//~z) (8) 

where p ~ = 0.031 _+ 0.002. We can obtain the values q, in Eq. 5 from (6)-(8) as 

l og (C , , (1 ) ) - log(C , , (m  .... )) log(Z,,) + log(p,,) - �88 log(n) 
q , ~  ~ (9) 

D ~ m a  x - -  1 m m a  x - -  1 

For n--1000 and 2000, this equation predicts that q,,--1.099 and 1.060, 
respectively, whereas the Monte Carlo results in table II for C,(1)/C,,(5) 
indicate that the slope of log(C,,(mp)) corresponds to values of q, ~ 1.4; for 
larger values of n the curves of log(C,(mp)) versus mp initially point below 
the point corresponding to the tight-spiral configuration, and thus must 
bend upward at larger m~. 
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For n up to 34 we plot in Fig. 2 the specific heat, defined by 
fix=-02F/Off 2, and in Fig. 3 we plot the density of parallel contacts 
<mp>/n, as a function of the inverse temperature ft. In both figures we add 
the graphs for n = 50, I00, 200, 500, 1000, 2000 and 10,000, obtained from 
Eq. (5), as dotted lines. In Fig. 2, the value of fl where the peak of the 
specific heat is located is moving backward to fl = log(it), as is the point 
where <rap>In is increasing steeply in Fig. 3. The jump in the density of 
parallel contacts (i.e., the energy density) is increasing with increasing n, 
indicating a first order transition. In fact, assuming Eq. (5) one can show 
analytically that in the limit n--* oo the function <rap>In approaches the 
Heaviside step function O(log(/~)), and this still holds if Eq. (5) is an upper 
bound rather than an exact expression in the regime between tight spirals 
and walks with few parallel contacts, Both the specific heat and the density 
of parallel contacts are insensitive to the fact mentioned earlier, that the 
curve starts somewhat steeper at small mp and thus must bend up at larger 
rap. If anything, this will increase the peak value of the specific heat, and 
the steepness of the density curve. 
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Fig. 2. Specific heat as a function of inverse temperature ft. In the direction of increasing 
peak value, the curves are obtained for n = 25, 30, and 34 from exact enumerat ion (solid lines) 
and for n = 5 0 ,  100, 200, 500, 1000, 2000, and 10,000 from Eq. (4) (dotted lines). 
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Fig. 3. Density of parallel contacts as a function of inverse temperature ft. In the direction 
of increasing density, tile curves are obtained for n = 25, 30, and 34 from exact enumeration 
(solid lines) and for n=50, 100, 200, 500. 1000, 2000, and 10,000 from Eq. (4) (dotted lines). 

A n o t h e r  w a y  to e s t i m a t e  the t r a n s i t i o n  p o i n t  is to  l o o k  at  the  zeroes  
of  the  p a r t i t i o n  func t i onJ  s' ')~ T h e  p a r t i t i o n  func t ion  o f  an  O S A W  of  n s teps  
wi th  mp pa ra l l e l  c o n t a c t s  is a p o l y n o m i a l  o f  deg ree  m . . . .  ( the  m a x i m u m  
n u m b e r  o f  pa ra l l e l  c o n t a c t s )  in the v a r i a b l e  x =  e Is, hence  it c an  be con-  
ven ien t ly  w r i t t en  in t e r m s  of  its n r o o t s  r.,p in the  c o m p l e x  p lane :  

O/max 

Z . ( x )  = C,,(0) 1--[ 1 --  (x/r,, , ,) 
n i p  = ] 

a n d  the free e n e r g y  per  s teps  

(10)  

1 l~  + 1 ........ ( ~ . , r )  F.(x) 11 n y" log  1 
m p  = ] 

(11)  
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The coefficients C,(m) are real and nonnegative,  hence none of  the roots 
lies on the real positive axis, but for n --* ~ they will cross it at some point 
x,. <~it, since we rigorously know the existence of  a phase transition. 

We calculated the zeroes of  the partition function corresponding to the 
exact data up to n = 34 and plot them in Fig. 4a. The roots seem to lie in 
nearly perfect circles for every n, but the radius decreases with increasing 
n. The nth roots nearest to the real positive axis approach the real axis 
along a nearly straight line. In Fig. 4b we plot the real part of  the root 
nearest to the real axis for n = 25 . . .  34, against 1/n. Again, the figures are 
consistent with a transition at x,. ~ 2.5. 

3. NUMBER OF PARALLEL CONTACTS FOR ~ = 0  

The second major topic of  this paper is to investigate the behavior of  
the number of  parallel contacts m/, in the limit n ~ co. In Fig. 5 we plot 
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bars are Monte Carlo measurements, the dotted line results from Eq. (4) and is an upper bound, 
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the behavior of ( r a p )  as a function of 17, obtained from Eq. (5), which we 
proposed to be an upper bound. The upper bound reaches asymptotically 
the value mp= 0.08. Clearly, the earlier mentioned fact that the curve has 
a somewhat steeper slope at large n and small m r has impact on ( m p ) ,  as 
these configurations are dominant at fl = 0. Therefore we do not use Eq. (5) 
in the remainder of  this section. With Monte Carlo simulations we have 
determined the expected number  of parallel contacts ( rap)  as a function 
of n. The results are given in Table III  and Fig. 5 and are in agreement with 
results published by Flesia, ~31 but extend to larger values of n. The Monte 
Carlo results seem to converge to a value around 0.05. 

To understand the underlying physics in the regime fl = 0 better, we 
take a closer look at where the parallel contacts are made, and relate this 
to other types of SAWs. Consider an oriented OSAW of length n, with a 
parallel contact between the steps i and j of the walk. The sequence of 
steps from i to j constitutes a polygon of length l = j -  i + 1, if one of the 
two steps that form a contact is rotated 90 ~ to close the polygon. The 

Table III. Monte  Carlo Data for (m.), the Expected Number  of 
Total Parallel Contacts 

, ( m, ) , ( I . .  ) 

9 0.001966(3) 10 0.00505(3) 
11 0.00450(5) 12 0.00715(3) 
13 0.00698(2) 14 0.00918(3) 
15 0.00921(3) 16 0.01106(4) 
17 0.01118(3) 18 0.01274(4) 
19 0.01293(2) 20 0.01429(3) 
21 0.01446(4) 22 0.01577(4) 
23 0.01592(2) 24 0.01693(7) 
28 0.01925(2) 29 0.01953(7) 
30 0.02025(3) 38 0.02358(5) 
39 0.02389(7) 40 0.02431(8) 
41 0.02448(4) 48 0.02667(5) 
49 0.02690(8) 50 0.02731(7) 
70 0.03129(7) 71 0.03141(5) 
80 0.03281(7) 90 0.0338(4) 
99 0.0350(5) 120 0.0372(4) 

150 0.0385(4) 200 0.0406(4) 
300 0.0429(4) 400 0.0446(4) 
500 0.0462(7) 700 0.0471(6) 

1000 0.0492(9) 1500 0.0493(8) 
2000 0.0497(8) 3000 0.0497(9) 
5000 0.0514(3) 
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remaining sequences of steps from 0 to i and from j to n are two self- 
avoiding walks of length i and n - j ,  respectively. These two SAWs can be 
combined into one self-avoiding two-legged star: a SAW of length n - 1, on 
which one special point (the origin of the two-legged star) is marked. Note 
that since the two SAWs are separated by the loop, one being located on 
the inside of the loop and one on the outside, the two-legged star is always 
self-avoiding. The mapping of an OSAW with one parallel contact into a 
rooted polygon plus a two-legged star is illustrated in Fig. 6. 

If an OSAW has more than one parallel contact then we can map this 
OSAW onto different combinations of a rooted polygon plus a two-legged 
star. In general, if the OSAW has mp parallel contacts, there a r e  mp such 
mappings into a rooted polygon plus a two-legged star. The reverse map- 
ping, i.e., the combination of a two-legged star plus a rooted polygon into 
an OSAW with a parallel contact, is not guaranteed to result in an OSAW 
with a parallel contact, as they might cross. Therefore, the total number 
of rooted polygons of length l times the total number  of two-legged stars 

Fig. 6. 

+ 

Decomposition of  an OSAW into a loop and a two-legged star. 
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of length n - / ,  summed over all l, is an upper bound to the number of 
OSAWs of length 1l, multiplied by the expectation value of the number of 
parallel contacts for these walks. 

Let us definef(n,  l) as the probability that a two-legged star of length 
1 7 - / ,  if combined with a rooted polygon of length l, results in an OSAW. 
Then we can write 

( me ) Z,, = Y' mp C,,( m z, ) = ~ ,  P ,  S,, _ i f (n ,  1) 
m e / 

(12) 

where Z,,, P,, and S,, are the number of OSAWs, rooted polygons and two- 
legged stars of length 17, respectively. 

We know that, for large 17, 

Z ,  ~l t"n  ''.~- J (13) 

S,, ~ lt"n ~' (14) 

p,, ~it,,n:,_ 2 ( 15 ) 

Combining this with (12) leads to 

(rap)  = ~ U -  2(n - I)~'" f (n,  l) (16)  
1l }'s - -  1 

I 

We can obtain insight in the behavior of the function f ( n , / )  by means 
of Monte Carlo simulations. OSAWs are sampled randomly, and for each 
parallel contact the loop length / =  I J - i + 1 1  is determined, where i and j 
are the steps making the parallel contact. This procedure gives us ( rap)( / ) ,  
the expectation value of the number of parallel contacts with loop length/.  
Results for OSAWs with a length n = 500, 1000, 2000, and 5000 are plotted 
in Fig. 7. The quantity ( m p ) ( I )  shows a power-law behavior, where the 
length n of the OSAW is an upper bound to the length l of the loop. It is 
important, however, that, besides this obvious dependence, the total length 
n does not appear to have any influence on the behavior of (n7p)(/) ,  and 
this quantity is well described by a power law: 

Numerically, we find 

( m p ) ( I )  ~ kl  -:" 

k = 0.35 -t- 0.1 

or / = 1.65 -t- 0.05 

17) 

18) 

19) 
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Fig. 7. Probability that an OSAW has a parallel contact with a loop oflength I, for OSAWs 
with a total length n = 500, 1000, 2000, and 5000. For each parallel contact, the loop length 
I is defined as /= I J - i +  11, where i and j are the steps of the OSAW making a parallel 
contact. 

To ob ta in  the mean  number  of  paral le l  contac t s  <m,,>, we sum over all 
poss ible  (even) lengths / o f  the roo ted  po lygon:  

<m.> =Z<m.>(l)~k ~ 1 -~' (201 
I 1 = 8  

F o r  n ~ ~ the r igh t -hand  side equals  a cons tan t  t imes the function ff(c~/), 
which converges  to a cons tan t  for ~ / >  1. This  implies  aga in  tha t  <mp> 
tends  to a cons tant ,  in agreement  with ear l ier  M o n t e  Car lo  results  of  
Flesia/31 

The  fact that  <rap> is cons tan t  implies  that  the S A W  crit ical  exponent  
7 is cons tan t  in the free and  repulsive regime (i.e., for fl~<0), and  
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presumably until the transition. For  the exponent  7 to change with fl, the 
exponent  el should be ~< 1, since this will cause the ~ function to diverge, 
but this is not  supported by our  numerical results in Fig. 7. 

It is possible to put an upper  limit to how far ( r ap )  will still increase 
if n is increased above 5000: Fig. 7 shows that  the contr ibut ion of  loops 
with a length below 1000 certainly has converged for n = 5000; thus 

(mp)(oo)-(mp)(5OOO)<k s l - ' ~ < 1 0  - s  
/ = 1 0 0 0  

A different approach  which estimates the number  of  both  parallel and 
antiparallel contacts  is to use (he similarity between an O S A W  and a twin- 
tailed tadpole. Consider an O S A W  with a contact  between steps i and j of  
the walk. If  we add a new edge between steps i and j we obtain an object 
which we will call a twin-tailed loop (see Fig. 8). A twin-tailed loop differs 
from a nonuniform twin-tailed tadpole only by one edge, and has the same 
asymptot ic  behavior. If the contact  is parallel, then the twin-tailed loop has 
one tail inside the loop and the other  outside (see Fig. 8a), while if the 

(a) 

( b )  

// // 

Fig. 8. An OSAW with a contact can be translbrmed into a twin-tailed loop by adding one 
step. (a) If the contact was parallel, the twin-tailed loop has one tail on the inside and one 
on the outside of the loop. (b) If the contact was antiparallel, both tails are located on the 
outside of the loop. 
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contact  is antiparallel  bo th  tails are outside (see Fig. 8b). This is of  course 
only true in two dimensions.  Each O S A W  with m contacts  can be mapped  
into m distinct twin-tailed loops. If T,, is the total  numbe r  of  twin-tailed 
loops of total  length , ,  then it follows that  

7",, = Y~ mC,,(m) (21) 

Dividing bo th  sides by Z , ,  where Z ,  is the part i t ion function of SAWs, it 
follows that  

( m )  = T, , /Z,  (22) 

Asymptot ical ly ,  Z ,  ~ / d ' r ? " - i .  where )'.,. is the exponent  for SAWs. Zhao  
and L o o k m a n  *m~ proved that  twin-tailed tadpoles have the same growth 
cons tant  it as SAWs and that  the exponent  ), is )'=)'.~ + 1. The same kind 
of p roof  holds for twin-tailed loops. Replacing these results in Eq. (22) 
implies the known result ( m )  ~ , .  

Consider  now the parallel and the antiparallel  case separately. Twin- 
tailed loops with both  tails outside the loop are the dominan t  configura- 
tions, so they have the exponent  ~, of  the total set. i.e., ~,= y.,.+ 1. This 
implies as previously that  ( m , , )  ~ i1 as was proven by Flesia) 3~ 

Parallel contacts  cor respond  to the subset T*  of twin-tailed loops with 
one tail on the inside and one on the outside of  the loop. The question is, 
what  is the value of the exponent  )' (let us call this exponent  ~',) for this 
subset T,*? Simple tadpoles (i.e.. tadpoles with only one tail) have the same 
}, as SAWs. ~m~ Since one element of  T,* can be constructed fl-om a simple 
tadpole  by adding one edge inside the loop. it follows that  y, >~ y.,. On the 
other  hand,  since T,* is a subset of  the set of  twin-tailed loops, it follows 
that  }', ~< ),.,. + 1. and this inequality can be made  strict by considering that  
( , , , , )  - o( , ) .  '2' 

We can gain insight into this mat te r  by randomly  generat ing OSAWs 
of length n, and for each parallel contact  determining the length t of  the 
inside tail. Note  that  if a parallel contac t  is formed between steps i and j 
of  the OSAW,  the steps from i to j form a loop. and "inside" and "outs ide"  
tails refer to inside or  outside this loop. The results are plotted in Fig. 9. 
Ext rapola t ing  these results, we est imate that  the fraction of  twin-tailed 
loops with lehgth t of  the inside tail is decreasing as 

( m p ) ( t ) - k , t  ~' (23) 

where ~, = 1 .6_0.1 .  The paramete rs  ~/ and a, are within the statistical 
errors of  one ano ther  and are p robab ly  the same. As in Eq. (23) the 
pa rame te r  ~x, exceeds 1, Y~,(mp(t)) will not be more  than a constant  times 
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Fig. 9. Probability that an OSAW has a parallel contact with an inside tail of length t for 
OSAWs with a total length n = 5(10, 1000. 2000, and 5000. For each parallel contact, the steps 
i up to j form a loop, where i and j are the steps of the OSAW making a parallel contact. The 
inside tail is defined as those steps of tile OSAW that are located within this loop. 

m,(t = 0). This implies that T,* asymptotically seems to behave as simple 
tadpoles which have the same ;' as SAWs. If we assume, based on these 
numerical results and intuitive arguments, that the twin-tailed loops with 
one tail inside and one outside behave as simple tadpoles, then y ,=  y.,., 
which would imply that <m~,> approaches a constant. 
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